Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Bis[N-(2-aminoethyl)morpholine]copper(II) bis(tetrafluoroborate)

Ole Sander, Felix Tuczek and Christian Näther*

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstraße 40, D-24098 Kiel, Germany

Correspondence e-mail: cnaether@ac.uni-kiel.de

Key indicators

Single-crystal X-ray study T = 170 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.034 wR factor = 0.092Data-to-parameter ratio = 17.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the crystal structure of the title compound, $[Cu(C_6H_{14}-N_2O)_2](BF_4)_2$, the Cu atom is coordinated by four N atoms of two symmetry-related N-(2-aminoethyl)morpholine ligands in a slightly distorted square-planar geometry. Including two longer contacts to two F atoms of two symmetry-related tetrafluoroborate anions, the coordination polyhedron can be described as a tetragonal bipyramid. The Cu atom is located on a centre of inversion, whereas the N-(2-aminoethyl)morpholine ligand and the tetrafluoroborate anion are located in general positions. The crystal packing is stabilized by N— $H\cdots F$ and $N-H\cdots O$ hydrogen bonds.

Received 24 March 2005 Accepted 30 March 2005 Online 9 April 2005

Comment

The structure determination of the title compound, (II), was undertaken as part of a project on the synthesis of binuclear copper(II) complexes. Crystals of (II) were obtained by accident in the reaction of copper(II) bis(tetrafluoroborate) with [2-(morpholin-4-yl)ethyl][1-(3-{[(E)-2-(morpholin-4-yl)ethyl]mino]methyl}phenyl)-(E)-methylidene]amine, (I), in methanol.

$$\begin{bmatrix} & & & & \\$$

The asymmetric unit of (II) consists of one Cu atom located on a centre of inversion, one crystallographically independent N-(2-aminoethyl)morpholine ligand and one crystallographically independent tetrafluoroborate anion, the ligand and anion lying in general positions. Each Cu atom is surrounded by four N atoms of two symmetry-related N-(2aminoethyl)morpholine ligands in a slightly distorted squareplanar geometry. The Cu-N bond lengths are 1.9904 (15) and 2.1270 (14) Å and the cis-N-Cu-N angles are 94.56 (6) and 85.44 (6)° (Table 1 and Fig. 1). There are two additional long contacts between the Cu atom and two F atoms of two symmetry-related tetrafluoroborate anions of 2.5019 (12) Å. If these two contacts are included in the copper coordination, the coordination polyhedron can be described as a slightly distorted tetragonal bipyramid (Fig. 2). The crystal packing is stabilized by N-H···F and N-H···O hydrogen bonds (Table 2).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Experimental

A solution of $\text{Cu}(\text{BF}_4)_2$ (0.8 g) in methanol (10 ml) was added to a solution of [2-(morpholin-4-yl)ethyl][1-(3-{[(E)-2-(morpholin-4-yl)ethylimino]methyl}phenyl)-(E)-methylidene]amine [(I), 0.4 g] in methanol (10 ml). The colour of the solution rapidly changed to dark blue and after 30 min a violet solid precipitated. This solid was washed with diethyl ether and dried under vacuum. Afterwards, it was dissolved in acetonitrile to give a dark-blue solution. After 3 d, violet crystals were obtained by diffusion of diethyl ether into the former solution.

Crystal data

$[Cu(C_6H_{14}N_2O)_2](BF_4)_2$	Z = 1
$M_r = 497.54$	$D_x = 1.663 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 7.6461 (6) Å	Cell parameters from 6907
b = 8.4018 (7) Å	reflections
c = 8.4258 (7) Å	$\theta = 1.5 – 28^{\circ}$
$\alpha = 85.89 (1)^{\circ}$	$\mu = 1.19 \text{ mm}^{-1}$
$\beta = 78.08 \ (1)^{\circ}$	T = 170 (2) K
$\gamma = 69.757 (9)^{\circ}$	Block, violet
$V = 496.90 (7) \text{ Å}^3$	$0.11 \times 0.10 \times 0.09 \text{ mm}$

Data collection

Stoe IPDS diffractometer	$R_{\rm int} = 0.032$
φ scans	$\theta_{\rm max} = 28.0^{\circ}$
Absorption correction: none	$h = -9 \rightarrow 10$
4509 measured reflections	$k = -10 \rightarrow 11$
2317 independent reflections	$l = -11 \rightarrow 11$
2158 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0616P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.034$	+ 0.1224P]
$wR(F^2) = 0.092$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
2317 reflections	$\Delta \rho_{\text{max}} = 0.58 \text{ e Å}^{-3}$
134 parameters	$\Delta \rho_{\min} = -0.93 \text{ e Å}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.051 (8)

Table 1 Selected geometric parameters (Å, °).

Cu1-N2	1.9904 (15)	Cu1-N1	2.1270 (14)
N2-Cu1-N2 ⁱ	180	N2-Cu1-N1	85.44 (6)
N2-Cu1-N1 ⁱ	94.56 (6)	N1 ⁱ -Cu1-N1	180

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

Table 2 Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
$ \begin{array}{c} N2-H2C\cdots F1^{ii} \\ N2-H2D\cdots O1^{iii} \\ N2-H2D\cdots F3^{i} \end{array} $	0.92	2.20	3.006 (2)	146
	0.92	2.24	3.0376 (19)	145
	0.92	2.40	3.0781 (19)	130

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 2 - x, 1 - y, 1 - z; (iii) x, y, 1 + z.

All H atoms were located in a difference map and were positioned with idealized geometry, with C—H = 0.99 Å and N—H = 0.92 Å, and refined using a riding model [$U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C,N})$].

Figure 1

The component ions of the title compound, showing the copper coordination, with the atom labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]

Figure 2

The structure of the title compound, viewed side-on, showing the labelling of selected atoms. The long Cu···F contacts to the tetrafluoroborate anions are shown as dashed lines.

Data collection: *IPDS Program Package* (Stoe & Cie, 1998); cell refinement: *IPDS Program Package*; data reduction: *IPDS Program Package*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997; program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *CIFTAB* in *SHELXTL*.

This work was supported by the state of Schleswig-Holstein.

References

Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stoe & Cie (1998). *IPDS Program Package*. Version 2.89. Stoe & Cie, Darmstadt, Germany.